
-

Memory	Management

Intuition

Programs	need	to	process	data

How	do	they	refer	to	the	data?

They	use	addresses	of	data

Paging

Reason	for	paging

We	want	to	create	the	illusion	that	...

the	program	has	all	the	memory

2^n	bytes	on	n-bit	machines

4GB	in	32-bit	machines

the	program's	address	starts	from	zero

...	but	we	don't	have	that	much	physical	memory

thus	we	do	a	translation

from	"logical	address"	to	"physical	address"

logical	address	is	what	the	programs	see

physical	address	is	where	the	data	actually	reside	in

The	translation	removes	the	need	to	recompile	the	program	
if	it	uses	"absolute	addresses"	(hard	code	addresses	in)

The	essence	of	page	table:	a	search	tree

a	map	from	addresses	to	addresses

Why	not	use	arrays?	Array	look	ups	take	just	constant	time

Why	array	look	ups	take	constant	time?

array	look	up	is	also	like	a	tree	search	(with	bits	as	index),	
but	is	"parallelized"	by	processor's	circuits

The	processor	looks	up	32/64-bit	path	in	one	cycle

This	is	the	reason	why	array	indexing	is	"constant	time"

Why	can	the	processor	do	this?

binary	"search"	can	happen
simultaneously	at	gate	level

`a'	and	`b'	both	select	half	of	the	AND
gates,	but	in	different	patterns

When	the	selections	of	`a'	and	`b'
combined,	they	narrow	down	and
select	only	one	AND	gate

This	happens	simultaneously

...	but	it	takes	more	space

a	map	for	32bit	address	space	
takes	4GB	entries

This	is	like	a	"full	tree"

Page	table	is	a	tree	that	is	not	"full"

contains	only	addresses	that	are	used

...	so	we	"segment"	the	address	bits	and	that	form	a	tree and	call	it	a	"page	table"

Why	we	need	TLB	cache

Address	search	in	page	tables	is	sequential

unlike	array	look	ups

(at	least)	one	cycle	at	each	level

That's	why	we	need	TLB	cache

TLB	is	a	map	from	32bit	->	32bit

so	it	can't	map	all	the	addresses reason

only	store	the	most	recently	used	ones

but	it	has	only	one	level	of	look	up

example

IA-32

10bit+10bit+12bit

(page	directory	+	page	table	+	offset)

more	levels	are	needed	for	64-bit	machines

used	by	almost	all	OSes	today

Unix

Linux

BSD

Mac	OS	X

Windows

Segmentation

Segmentation	can't	be	disabled	on	x86

So	we	must	combine	segmentation	and	paging

GDT	that	can	be	used	to	"disable"	segmentation	effectively

Operates	on	the	physical	address	space

The	program	doesn't	know	how	much	memory
is	there

No	address	arithmetic	allowed

Only	one	level	of	indirection

Processes

Definition:	the	execution	of	a	program

program	is	a	data	structure

execution	is	really	just	another	data	structure

What	is	execution?

In	FP	terms:	a	partially	reduced	lambda	term

1	+	2	*	3

How	do	I	execute	it	and	get	the	value?
t1	=	2	*	3
t2	=	1	+	t1
return	t2

Because	the	result	can	take	a	long	time	to	compute	and	we	
have	limited	number	of	processors

We	have	to	switch	to	run	other	programs	before	finishing	the	
whole	program

What	do	we	need	to	remember	when	the	switch	happens?

what	is	left	to	be	done

For	example,	if	switch	happens	after	we	get	the	value	of	t1,	
we	need	to	remember	...

t2	=	1	+	t1
return	t2

all	the	data	needed	in	order	to	continuethe	computed	value	of	t1

1	and	2	are	together	are	called	a	contextor	"continuation"	in	FP	terms

x86stack

grows	downwards	(address	decrease	when	push)

esp

call	instruction	is	hardwired	to	use	esp

If	we	don't	use	call	instruction	then	we	don't	need	to	use	esp

ebp

associated	with	stack	only	by	convention

record	"where	I	should	restore	esp	to	when	return"

The	same	"restoration"	of	esp	can	be	done	by	a	simple	
arithmetic	instruction	like	"add	esp	16"

The	use	of	ebp	might	help	debugging	(printing	backtraces	at	
runtime),	because	the	printing	code	has	no	idea	about	where	
the	functions	will	return	to

backtrace	function	is	an	unusual	function

It	visits	other	functions'	stacks

needs	privilege?
Direct	Object	Allocation

Handles	hold	allocated	addresses	directly Fields	are	accessed	by	indirect	addressing

No	TLB	is	needed

used	by	some	old	/	dead	OSes

Oberon

Designer:	Niklaus	Wirth

a	retrospective	paper	on	the	history	of	Oberon
shadowed	by	Wirth's	own	work	on	Pascal,
so	that	few	people	know	how	good	it	is

Multics	?

It's	a	shame	that	some	very	good	features	of
Multics	is	still	not	in	OSes	we	are	using	today!

does	not	distinguish	objects	in
memory	and	objects	on	disk

automatic	object	persistence This	is	what	"column	based"	data	bases	are
doing	today..

no	need	for	"data	bases"

System/38

Lisp	Machine

File	Systems

http://upload.wikimedia.org/wikipedia/commons/thumb/e/e7/Intel_80486DX2_bottom.jpg/220px-Intel_80486DX2_bottom.jpg
http://longhornpainting.com/wp-content/uploads/2012/05/process.jpg
http://www.webopedia.com/FIG/OPER-SYS.gif
http://upload.wikimedia.org/wikipedia/commons/thumb/6/6e/Virtual_memory.svg/250px-Virtual_memory.svg.png
http://www.electronics-tutorials.ws/combination/comb27.gif
https://www.mindomo.com/doc.htm?d=aa3bcfa5ccdb4812876987d11e8a6bb8&m=318b0e54b8184c8bb263bae96245ae93
https://www.mindomo.com/doc.htm?d=b1dcc80303f745f488694cb3b695982d&m=318b0e54b8184c8bb263bae96245ae93
http://upload.wikimedia.org/wikipedia/commons/thumb/3/35/Tux.svg/170px-Tux.svg.png
http://skinwalker.files.wordpress.com/2012/06/bsd-big.png
http://farm4.static.flickr.com/3223/3314987633_917d8145af.jpg
https://www.mindomo.com/doc.htm?d=57e70bf5cf194cc2ac3781f370c15e71&m=318b0e54b8184c8bb263bae96245ae93
https://www.mindomo.com/doc.htm?d=5eeb28f14d094f2d808972ea3ef012ec&m=318b0e54b8184c8bb263bae96245ae93
http://upload.wikimedia.org/wikipedia/commons/c/cc/OberonScreen.PNG
http://en.wikipedia.org/wiki/Oberon_(operating_system)
https://yiqing0.github.io/blogs/org/docs/BC03.pdf
http://www.vaxman.de/historic_computers/multics/multics_logo.jpg
http://www.multicians.org/
http://upload.wikimedia.org/wikipedia/commons/thumb/4/43/S38_I.jpg/320px-S38_I.jpg
http://en.wikipedia.org/wiki/IBM_System/38
http://upload.wikimedia.org/wikipedia/commons/thumb/1/16/LISP_machine.jpg/363px-LISP_machine.jpg
http://koehlerlaw.net/wp-content/uploads/2011/10/File-Folders.jpg



